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data predictionX Not a black box!

Visualization tools are a 
game changer for using 

machine learning methods 
for science.
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Artificial Neural Networks [ANN]

● linear regression with non-linear mapping by an 
“activation function”

● training of the network is merely determining the 
weights “w” and bias/offset “b" 
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e.g. gridded sea surface 
temperatures
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Artificial Neural Networks [ANN]
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output/prediction 
layer

class A (e.g. warmer than average)

class B (e.g. average temperature)

class C (e.g. cooler than average)

e.g. gridded sea surface 
temperatures
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● Complexity and nonlinearities of the ANN allow it to learn many 
different pathways of predictable behaviour

● Once trained, you have an array of weights and biases which can be 
used for prediction on new data
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Artificial Neural Networks [ANN]

data prediction
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● Complexity and nonlinearities of the ANN allow it to learn many 
different pathways of predictable behaviour

● Once trained, you have an array of weights and biases which can be 
used for prediction on new data

● But, how did the network make its prediction? What did it learn?
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What to expect from ANN visualization
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Not a perfect view, but better than 
the “black box”.
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Two types of visualization tools
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Type A: Feature Visualization
Philosophy: Seek to understand all internal components of ANN.

Seek to understand the meaning of all intermediate (blue) nodes.
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Type B: Attribution / Explaining Decisions
Philosophy: Understand the ANN’s overall decision making for specific input.

Seek to understand the meaning of the entire algorithm - for a specific input.
Do NOT worry about meaning of intermediate (blue) nodes.
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A visualization tool: Layerwise Relevance Propagation
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Prediction
of 1 sample

Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing

Pr(cat)
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A visualization tool: Layerwise Relevance Propagation
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Pr(cat)

LRP
of 1 sample

Prediction
of 1 sample

Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing

Pr(cat)
where the network looked to 

determine it was a “cat”
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Example use of 
LRP

Task: Decide whether there is a horse in 
a given image.

Decision making strategy: use 
visualization tools to determine the 
strategy the network used to make a 
decision

16
Lapuschkin et al. (2019)
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regions relevant to the 
network’s decision
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What does this mean for earth 
system prediction research?
1. Identifying problematic strategies (i.e. right answer for 

the wrong reasons)

2. Designing the machine learning methodology

3. Building trust

4. Discovering new science!

○ When our machine learning method is capable of making an 

accurate prediction we can explore why
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LRP

Year 2000
Human Activity Index = 0.38

Year 2018
Human Activity Index = 0.66

LRP showing the relevant 
regions for the neural 

network’s prediction of 
increased human activity

Landsat imagery

Keys and Barnes (2020; in prep)
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LRP
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Science
Applications

1. Multi-year prediction

2. Subseasonal-to-seasonal 
prediction

3. Indicator patterns of forced 
change

4. Eddy-mean flow interactions

5. Human impacts on the land 
surface from Landsat imagery
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Multi-year prediction network set-up
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Benjamin Toms

Predicting 5-year average surface temperature at one grid point
Applied to 1200 years of CESM2 control simulation

Toms et al. (2020; in prep)
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Examples of neural 
network-driven 
predictions

● Neural network + LRP can be 
used to identify patterns of 
earth-system variability that 
lend predictability

24

example accurate prediction 

● Each prediction uses 
spatially unique information, 
although dominant patterns 
emerge

● Here, we predict 5-year average 
surface temperature using past 
maps of sea-surface temperature

Predicting 5-year average surface temperature at one grid point
Applied to 1200 years of CESM2 control simulation

Toms et al. (2020; in prep)

LRP



Colorado State University

Examples of neural 
network-driven 
predictions

● Neural network + LRP can be 
used to identify patterns of 
earth-system variability that 
lend predictability

25

● Each prediction uses 
spatially unique information, 
although dominant patterns 
do exist

● Here, we predict 5-year average 
surface temperature using past 
maps of sea-surface temperature

example accurate prediction 

Predicting 5-year average surface temperature at one grid point
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● Each prediction uses 
spatially unique information, 
although dominant patterns 
do exist

● Here, we predict 5-year average 
surface temperature using past 
maps of sea-surface temperature

example accurate prediction 

Predicting 5-year average surface temperature at one grid point
Applied to 1200 years of CESM2 control simulation

Toms et al. (2020; in prep)

LRP

For us, the science is not the making of a multi-year 
prediction - it is identifying predictable 

patterns/regimes of the earth system
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Wrap-up
● The most basic of neural networks can be viewed as nonlinear regression - 

climate scientists are well-equipped to think about this architecture

● Artificial neural networks are no longer black boxes - tools exist to help 

visualize their decisions. This is a game changer for their use in geoscience 

research.

● ANNs can be used for more than just prediction. The science can be what the 
network learns, rather than the prediction. Get creative combining your 

science with these tools!
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Labeled Data and Pre-trained Models

2

Labels

Features
Deep ModelInput Data Shallow Network



Visual Analytics for Machine Learning
1. Real time social media analytics for situational awareness

2. Spambot labeling and behavioral analysis

3. Upcoming NSF EarthCube project on Sea Ice mapping and 
classification 

3



Situational awareness 
for first responders:

• Interactive interface
• Visualizations
• Topic modeling
• Advanced filtering
• Trends/anomalies

User-
specified 
filtering 

based on 
time, 

location 
and topic

Trending
topic 

visualization

Relevant 
posts

Spatial
cluster 

lens

SMART

4

Spatial 
topic lens



Harnessing Salient Information in Noisy Text 
•How to reduce noise (irrelevant text).
• Support dynamic phenomena.
• Spatial dimension. 
• Temporal dimension. 
• Semantic dimension. 
• Support multilingual posts.

•Solution: 
• Interactively incorporate:
•User knowledge
• Linguistic context 
• The entire apartment is burning down. à ✓ Relevant
• Will Bernie feel the burn again? à✕ Not relevant
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Human-in-the-loop Neural Networks
Transform words into a semantic space:
• Word2Vec : A model pre-trained on roughly 100 billion words, provides word embeddings 

(context of the target word), with each word represented as a 300-dimensional vector.

Denver

Colorado

Indianapolis
Indiana
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Evaluation
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CrisisLexT26 datasets
◦ Trained iteratively with 10 tweets

Model reaches its average F1 score 
after approximately 200 tweets

2012
Colorado 
wildfires

2013
Boston 
bombings

2013
NY train 
crash



The most relevant about weather events: The least relevant about weather events:

Results after 20 Clicks…
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Social Spambot
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A computer algorithm that automatically produces content and interacts with humans 
on social media, trying to emulate and possibly alter their behavior.

◦ Spread disinformation
◦ Manipulate public opinions
◦ Distribute unsolicited spam
◦ Propagate malicious links
◦ Steal personal information

[Ferrara
2016]

Social Media Accounts

40%
Spammers

[Zhang 
2016]



Existing Automated and VA solutions
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[Miller 2014]

[Davis 2016]

[Cresci 2017]

[Cao 2016]

Issues
• Spambots with natural behavior at individual levelè Harder to detect spam groups/campaigns 
• Continually Changing Environment è Effort to maintain representative training set



Visual Analytics for Social Spambot Labeling (VASSL)
oOutput labels: Spambot or genuine 

oInput:
• Tweet Text
• Metadata:

11

Khayat, M., Karimzadeh, M., Zhao, J., & Ebert, D. S. (2020). VASSL: A Visual Analytics Toolkit for Social Spambot Labeling. 
IEEE Transactions on Visualization and Computer Graphics. 
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Upcoming NSF-funded project: Data 
Fusion for Sea Ice Classification
• SAR imagery 

• Sentinel-1 

• NISAR

• IceBridge

• ICESat

• ICESat-2
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EarthCube Data Capabilities: Enabling Analysis of 
Heterogeneous, Multi-source Cryospheric Data
• Morteza Karimzadeh, Geography, Information Science (CU Boulder)
• Farnoush Kashani-Banaei, Computer Science (CU Denver)
• Andrew Barrett (NSIDC)
• Walt Meier (NSIDC)
• Siri Jodha Khalsa (NSIDC)
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Thank you! 
Q/A

Karimzadeh@colorado.edu

@mortezakz
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http://colorado.edu


IceNet: A seasonal, deep learning-based pan-
Arctic sea ice forecasting system

Tom Andersson

Scott Hosking, María Pérez-Ortiz, Brooks Paige, Chris Russell, Andrew Elliott , Stephen Law, Tony Phillips, Jeremy Wilkinson, Yevgeny Askenov, Bablu Sinha, 
Will Tebbutt, Fruzsina Agocs, and Emily Shuckburgh

British Antarctic Survey, Alan Turing Institute, Cambridge University, UCL Centre for AI, National Oceanography Centre



Dynamical models (physics-driven)

● Model the laws of physics directly
● Based on causality
● Computationally expensive

Two climate forecasting paradigms: Physics-driven vs. data-driven

Credit: Schneider et al., Nature Climate Change



Statistical models (data-driven)

● Automatically learn complex, non-linear 
relationships between variables from raw data

● Based on correlations
● Computationally cheap (once trained)

Credit: Vinyals et al., CVPR

Dynamical models (physics-driven)

● Model the laws of physics directly
● Based on causality
● Computationally expensive

Two climate forecasting paradigms: Physics-driven vs. data-driven

Credit: Schneider et al., Nature Climate Change

Credit: DeepMind

Credit: Shutterstock



IceNet data: Observations
t (

m
on

th
s)

NSIDC ERA5

Time period: 1979-present (500 months)



IceNet data: Climate model (MRI-ESM2.0)
t (

m
on

th
s)

Time period: 1850-2100 (3012 months)



IceNet design: Inputs and outputs
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?



IceNet design: U-Net Architecture

2D Convolution:
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Concatenate

IceNet design: U-Net Architecture
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IceNet design: U-Net Architecture

● Three output classes:
a. No ice (SIC < 15%)
b. Marginal ice (15% < SIC < 80%)
c. Full ice (SIC > 80%)

● # of params: 10, 983, 434
● Pre-train on >10,000 months of climate 

model data (MRI-ESM2.0)
● Fine-tune on 1979-2015 observational data
● Validate (hindcast) on 2016-2018
● Ensemble of 3 networks

no ice

marginal ice

full ice

land



IceNet predictions: Predict entire second half of 2017 starting in June



IceNet predictions: Predict second half of 2017 one month ahead



IceNet predictions: September 2018



IceNet predictions: Prediction uncertainty (Aug 2017)
p(ice) = p(marginal ice) + p(full ice)

Observed



Hindcast results: 1 month ahead



Hindcast results: 6 months ahead



Validation mean performance vs. lead time



Thanks for listening!

Contact: tomand@bas.ac.uk



Entropy
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