## Arctic Coastal Erosion – Drew Point







| Time period              | Measured<br>erosion rate<br>(m/yr) | Calculated<br>erosion rate<br>(m/yr) | Calculated fraction of time shoreline is block- free  (%) |
|--------------------------|------------------------------------|--------------------------------------|-----------------------------------------------------------|
| Aug. 1979 – July<br>2002 | $8.0 \pm 0.9$                      | 8.0 ± 0.8                            | 68 ± 3                                                    |
| Aug. 2002 - July<br>2007 | 14.1 ± 1.7                         | 14.9 ± 1.4                           | 78 ± 2                                                    |



## Case 2: Stagnant water and ice with under-ice roughness

## Assumptions:

- Density current moves radially from its center, filling the cavities in the underside of the ice.
- Effective depth of under-side of ice subject to oil flow:

$$d = \frac{V_{void}}{Area}$$

- Effective fluid velocity:

$$U = \frac{Q}{2\pi rd}$$

If d < h, calculate U based on h instead.</li>



## Where we are – Task 1

**Task 1.** Develop algorithm/decision tree for determining the ICECON as a function of ice type, ice thickness, temperature, pressure, ice concentration, and snow depth.

Assess proposed approaches for ICECON (USCG District 9):



Note: 2 ft of brash ice can be associated with a range of ice conditions depending on surface temperature and pressure.