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Methods

• We evaluate regional Arctic sea ice extent (SIE) predictions using
two dynamical seasonal forecast systems developed at the
Geophysical Fluid Dynamics Laboratory (FLOR and
SPEAR MED).

• After assessing the regional prediction skill, we evaluate the
mechanisms of predictability in both systems.

Arctic Regional Prediction Skill

Figure 1: Regional SIE prediction skill (detrended ACC) in FLOR and
SPEAR MED for regions of summer ice variability. Square and dot markers in-
dicate months in which the ACC values are statistically significant at the 95%
confidence level. Squares indicate months where the model’s skill beats the per-
sistence forecast, and dots indicate months where the model’s skill is significant
but lower than persistence. ACC differences (SPEAR MED minus FLOR) com-
puted using the Fisher z-transformation are plotted in the third column. Upward
(downward) triangles indicate months where the SPEAR MED ACC values are
statistically significantly greater than (less than) the FLOR ACC values at the 95%
confidence level.

Figure 2: As in Fig. 1, but for regions of winter sea ice variability.

Sources of Summer Arctic Sea-Ice Predictability

Figure 3: Sources of regional September SIE prediction skill. Blue lines show the
detrended ACC skill in FLOR and SPEAR MED. Black and red lines show the
skill of linear regression forecasts based on regional SIE and regional sea ice vol-
ume (SIV), respectively. Dots indicate correlation values that are significant at
the 95% confidence level based on a t-test. Note that the statistical predictions
are shifted by 0.5 month lead time since these are computed using monthly mean
quantities, whereas the dynamical predictions are initialized on the first of each
month.

Sources of Winter Arctic Sea-Ice Predictability

Figure 4: Sources of regional February SIE prediction skill. Blue lines show the
detrended ACC skill in FLOR and SPEAR MED. Black and magenta lines show
the skill of linear regression forecasts based on regional SIE and regional upper
ocean heat content (uOHC), respectively.

Figure 5: Correlations between observed February Labrador SIE and upper
200m ocean temperatures used for SPEAR MED initial conditions (ICs) in ear-
lier months. The black contours show the observed February sea ice edge.

Figure 6: Correlations between observed February Okhotsk SIE and upper 200m
ocean temperatures used for SPEAR MED ICs in earlier months. The black con-
tours show the observed February sea ice edge.

Combined Predictability Regimes in the Chukchi Sea

Figure 7: Sources of Chukchi Sea SIE prediction skill. Blue lines show the de-
trended ACC skill in FLOR and SPEAR MED. Black, red, and magenta lines show
the skill of linear regression forecasts based on regional SIE, regional SIV and
uOHC, respectively. The uOHC predictor is based on a regional mean over the
Chukchi and Bering Seas.

Figure 8: Interaction of the Chukchi Sea ice edge with surface ocean currents. The
panels show monthly observed sea ice edges for each year from 1992–2020. The
climatological (annual mean) ocean surface speed from the SPEAR MED ocean
ICs is plotted in color.

Conclusions

• The FLOR and SPEAR MED dynamical models both skillfully
predict detrended regional Arctic SIE. SPEAR MED generally
has higher prediction skill, associated with improved sea ice
concentration and thickness initial conditions.

• The key sources of predictability for summer sea ice predictions
are SIE persistence at short lead times (0–1 months) and SIV
persistence at longer lead times (2–3 months).

• The key sources of predictability for winter sea ice predictions
are SIE persistence at short lead times (0–2 months) and uOHC
persistence at longer lead times (3-11 months).

• Atlantic and Pacific winter SIE predictability are associated with
the North Atlantic Oscillation (NAO) and North Pacific Gyre
Oscillation (NPGO), respectively.

• The Chukchi Sea displays seasonally-dependent predictability
regimes, controlled by SIE and uOHC in June, July, and
November, and SIE and SIV in August–October. This is due to
the seasonal evolution of the ice edge position and its interaction
with inflowing waters from Bering Strait.

• The combination of simple statistical models based on SIE, SIV,
and uOHC are generally able to reproduce the skill of the
dynamical models.
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Observed Decline of September Arctic Sea Ice Extent (SIE)



Sea Ice Outlook: Predictions of September 2021 SIE

Wang et al. (2021), Sea Ice Outlook June Report



Moving Beyond Pan-Arctic SIE Predictions

Melia et al. (2016), GRL

Shipping Routes

Fig. 2 Collapse of the Lincoln Sea Ice Arch during May 2017. Sentinel-1 SAR satellite images and derived sea ice motion vectors (km day-1) on: a May 8,
2017 at 12:55 GMT; b May 10, 2017 at 12:40 GMT; c May 12, 2017 at 12:32 GMT; and d May 14, 2017 at 12:08 GMT. The southern Lincoln Sea flux gate
used to calculate the ice area flux is shown in red.

Fig. 3 Daily ice area flux (103 km2 day-1) across the southern Lincoln Sea flux gate. The vertical solid red lines represent the best available estimates for
the onset of the stoppage of ice motion along Nares Strait during 2017 and 2018 with the dashed red lines representing the best available estimate of the
end of the stoppage during 2017 and 2018. The average ice area flux over various periods of interest are indicated by the blue lines. All data based on
Sentinel-1 satellite-derived sea ice motion vectors.
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Moore et al. (2021), Nat. Comms.

Lincoln Sea Ice Arches

V. Ludwig et al.: Observation of the 2018 North Greenland Polynya 2061

Figure 5. (a, c, e, g) Merged SIC before, at the beginning, at the maximum and after the refreezing of the polynya. The MODIS–AMSR2
pairs were acquired at 07:50 and 07:44 on 8 February, at 11:45 and 11:39 on 18 February, at 09:15 and 09:11 on 26 February and at 11:30
and 11:28 on 8 March, respectively. All times are UTC. (b, d, f, h) Corresponding Sentinel-1A/B daily mosaics. The colour bar units are
greyscale values. (i) Time series of the polynya area. The polynya area is calculated as the sum of the open water fraction (1 – merged SIC)
in the map area, multiplied by the respective grid cell size. All available granules are shown. The acquisition times of panels (a), (c), (e) and
(g) are marked by the vertical dashed lines.

www.the-cryosphere.net/13/2051/2019/ The Cryosphere, 13, 2051–2073, 2019

North Greenland Polynya

Ludwig et al. (2019), Cryosphere

George et al. (2020), Arctic Report Card

Ecosystem Prediction
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Regional Predictions

From Zack Labe



Outline for Today’s Talk:

• Introduce the FLOR and SPEAR_MED dynamical prediction systems

• Evaluate regional SIE prediction skill of these systems

• Understand mechanisms of regional SIE predictability

• Improve forecasts with sea ice data assimilation

• Skillful predictions of Arctic shipping routes



GFDL Prediction Systems: Dynamical Models 

1: Vecchi et al. 2014, J. Climate; 2: Delworth et al. 2020, JAMES

FLOR1 SPEAR_MED2

Atmosphere AM2.5; 0.5°, 32 vertical levels AM4; 0.5°, 33 vertical levels

Land LM3; 0.5° LM4; 0.5°

Ocean MOM5; 1.0°, 50 vertical levels MOM6; 1.0°, 75 vertical levels

Sea Ice SIS1; 1.0°, 5 category ITD SIS2; 1.0°, 5 category ITD

FLOR: Forecast-oriented Low Ocean Resolution
SPEAR: Seamless system for Prediction and EArth system Research



GFDL Prediction Systems: Initialization Methods

FLOR1 SPEAR_MED2

Ocean Data Satellite SST, Argo, XBT, Moored 
Buoys, CTD, Seal Data, other 
WOD profiles; daily

Satellite SST, Argo, XBT, Moored 
Buoys; daily

Atmospheric Data 3-D Temp from NCEP2 
Reanalysis; 6 hourly 

3-D Temp, Winds, Humidity from 
CFSR; 6 hourly

Sea Ice Data None SIC used to adjust under-ice SST; 
daily

Data assimilation method(s) Ensemble Kalman Filter (EnKF)1 Ensemble Kalman Filter (ocean 
ICs); Nudged atmosphere/SST 
run (sea ice, atm, land ICs)2

1: Zhang et al. 2007 Mon. Wea. Rev.; 2: Lu et al. 2020 JAMES

Note: No direct sea ice DA in these systems; will present SPEAR w/ sea ice DA ahead



GFDL Prediction Systems: Retrospective Seasonal Predictions

1: Vecchi et al. 2014, J. Climate; 2: Delworth et al. 2020, JAMES

FLOR1 SPEAR_MED2

Initialization Dates First of the each month First of the each month

Prediction Length One year One year

Ensemble Size 12 15

Time Period 1992-2020 1992-2020

FLOR: Forecast-oriented Low Ocean Resolution
SPEAR: Seamless system for Prediction and EArth system Research



A first question: 
How good are the sea ice initial conditions?



Sea Ice Concentration Climatological Biases (Model minus Obs)

• FLOR and SPEAR initial 
conditions (ICs) improve 
upon the model SIC 
biases from historical 
simulations (LE)

Bushuk et al. 2021, In prep.
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• SPEAR_MED has 
improved SIE initial 
conditions over FLOR 
in nearly all Arctic 
regions

• Improvement is due to 
treatment of SST 
under sea ice, which 
provides a strong 
constraint on SIE

Detrended regional SIE correlation



Do FLOR and SPEAR have SIE prediction skill?



Skillful Predictions of Pan-Arctic September Sea Ice Extent (SIE)
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A Cautionary Note: Systematic errors for real-time forecasts

Target: Jun, Lead 0
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A Cautionary Note: Systematic errors for real-time forecasts
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Rerun June 1, 2021 prediction using “final” OISST data

• Real time forecasting necessitates 
the use of “preliminary” OISST data 
for the most recent two weeks

• Real-time SPEAR SIE forecasts at 
short leads currently have systematic 
high biases associated with these 
data.



Regional SIE Prediction Skill
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Summer Regional Prediction Skill (Detrended ACC): Laptev and East Siberian

Skill exceeds persistence
Skill is significant, but lower than 
persistence
SPEAR exceeds FLOR
FLOR exceeds SPEAR



Summer Regional Prediction Skill (Detrended ACC): Beaufort and Chukchi

Skill exceeds persistence
Skill is significant, but lower than 
persistence
SPEAR exceeds FLOR
FLOR exceeds SPEAR



What are the key sources of predictability for 
summer SIE in these systems?



Sources of Summer (September) SIE Prediction Skill

• SIE/SIV predictors based 
on initial conditions used 
for forecasts
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Sources of Summer (September) SIE Prediction Skill

• Regional SIE/SIV 
predictors based on 
initial conditions used for 
forecasts

• Regional SIE persistence 
is the key source of 
summer prediction skill 
at short lead times (0-1 
months)

• Regional SIV persistence 
is the key source of 
summer prediction skill 
at longer lead times (2-4 
months)

• Combination of SIE and 
SIV predictors provide a 
challenging skill 
benchmark for models 
to beat



Winter Regional Prediction Skill (Detrended ACC): Barents and Labrador Seas

Skill exceeds persistence
Skill is significant, but lower than 
persistence
SPEAR exceeds FLOR
FLOR exceeds SPEAR



Winter Regional Prediction Skill (Detrended ACC): Bering and Okhotsk

Skill exceeds persistence
Skill is significant, but lower than 
persistence
SPEAR exceeds FLOR
FLOR exceeds SPEAR



What are the key sources of predictability for 
winter SIE in these systems?



Sources of Winter SIE Prediction Skill

• Regional SIE/OHC 
predictors based on 
initial conditions used for 
forecasts
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Sources of Winter SIE Prediction Skill
• Regional SIE/OHC 

predictors based on 
initial conditions used for 
forecasts

• Regional SIE persistence 
is the key source of 
winter prediction skill at 
short lead times (0-2 
months)

• Regional SIE shows a 
winter-to-winter 
reemergence of 
prediction skill

• Regional OHC 
persistence is the key 
source of summer 
prediction skill at longer 
lead times (3-11 months)

• Combination of SIE and 
OHC predictors 
provides a challenging 
skill benchmark



Connection to Large-Scale Modes of Variability: Labrador SIE - NAO

• Persistent correlations 
between winter Labrador SIE 
and earlier upper ocean 
temperature anomalies

• Spatial pattern is very similar 
to the NAO regression 
pattern

• Suggests that skillfully 
predicting the NAO could 
further improve Atlantic 
winter SIE predictions



Connection to Large-Scale Modes of Variability: Okhotsk SIE - NPGO



Revisiting Chukchi Sea Prediction Skill

Skill exceeds persistence
Skill is significant, but lower than 
persistence
SPEAR exceeds FLOR
FLOR exceeds SPEAR

• High skill for target months June, July, November
• Lower skill in intervening summer months
• Suggestive of a combination of different predictability regimes in this region.



Sources of Chukchi SIE Prediction Skill

Ocean-based predictability regime

• OHC predictor based on Chukchi and Bering Seas



Sources of Chukchi SIE Prediction Skill

Ocean-based predictability regime Ice thickness-based predictability regime

• OHC predictor based on Chukchi and Bering Seas



Sources of Chukchi SIE Prediction Skill

Ocean-based predictability regime Ocean-based 
predictability regime

Ice thickness-based predictability regime

• OHC predictor based on Chukchi and Bering Seas
• Findings consistent with Lenetsky et al. (2021), J. Clim., who found that Bering Strait OHT skillfully 

predict Chukchi SIA in June, July, and November, but not the intervening summer months.



Why is there a trade off between ocean and thickness based predictability regimes?

• Ocean surface current 
speed (m/s) plotted in 
color

• Observed sea ice edges 
plotted in gray contours

• Inflowing ocean waters 
interact strongly with 
the sea ice edge in June 
and July.

• Interaction with 
inflowing ocean waters 
is lost in August, when 
the ice edge retreats.

• Ocean-based 
predictability returns in 
November when ice 
edge returns to inflow 
location



Can sea ice data assimilation improve prediction skill?

Work led by Yongfei Zhang



SIS2/MOM6 Sea Ice Data Assimilation System1

• MOM6/SIS2 (SPEAR ice-ocean components) forced by the JRA-55do atmospheric reanalysis from 1982–2017 
• SST is nudged to OISST (SST under sea ice is set to salinity-based freezing point)
• Perturbed physics ensemble (albedo and ice strength parameters)
• Sea ice concentration NSIDC Nasa Team observations assimilated using Data Assimilation Research Testbed 

(DART) and the Ensemble Adjustment Kalman Filter (EAKF)

1: Zhang et al. 2021, J. Clim.

SIC RMSE

Free run

SST restoring
SIC DA

SIC DA + SST restoring



SIC DA Improves Subseasonal (0-8 week) SIE Prediction Skill
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F��. 2. ACC of detrended sea ice extent (SIE) for regions of summer sea ice variability. The time series shown

as a function of forecast days are averaged over initialization months of June, July, August, and September. The

shading represents ±
p

2 standard deviations of the 14-day running mean ACC values calculated from a bootstrap

procedure. Open circles on the bottom represent that the 14-day running mean detrended ACC values between

nIceDA and Ice DA are significantly di�erent at the 95% confidence level. Filled circles represent that IceDA

and the SIE persistence forecast are significantly di�erent at the 95% confidence level. Black circles represent

that the skill of IceDA exceeds nIceDA or the persistence forecast, and grey circles the skill of IceDA is lower

than nIceDA or the persistence forecast.
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SPEAR w/ SIC DA
SPEAR
SIE persistence

Zhang et al. 2021, In Prep.

• Statistically significant, but relatively 
modest, improvements in regional SIE skill 
associated with SIC DA.

• Subseasonal predictions lose to 
persistence for first ~10 days, generally 
beat persistence beyond 10 days.



SIC DA Improves Subseasonal Predictions of SIC

F��. 6. Pan-Arctic averaged ACC of detrended sea ice concentration (SIC) as a function of forecast month.

ACC is calculated everyday of the year using data from 1993-2017. Only grid cells that have >10% SIC

interannual variability are taken into average for each day. In the area-averaging step, values averaged over less

than 10% area of a certain region are filtered out.
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F��. 10. 45 forecasting-day mean detrended ACC di�erences of sea ice concentration (SIC) between the two

experiments (IceDA-nIceDA) for each initialization month
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F��. 10. 45 forecasting-day mean detrended ACC di�erences of sea ice concentration (SIC) between the two

experiments (IceDA-nIceDA) for each initialization month
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F��. 8. 45 forecasting-day mean RMSE di�erences of sea ice concentration (SIC) between the experiments

IceDA and nIceDA (IceDA-nIceDA) for each initialization month.
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F��. 8. 45 forecasting-day mean RMSE di�erences of sea ice concentration (SIC) between the experiments

IceDA and nIceDA (IceDA-nIceDA) for each initialization month.
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Zhang et al. 2021, In Prep.

SIC RMSE differences: (IceDA minus No IceDA; 45 day lead)

SIC ACC differences: (IceDA minus No IceDA; 45 day lead)



Can shipping routes be skillfully predicted?

Work led by Mike Winton



Observed Minimum Ice Path is Highly Correlated with Regional SIE

Winton et al. 2021, In Prep.

24

Fig. 2.  July-October average Northwest (top) and Northeast (bottom) MIPs and

comparable total regional ice extents.



Skillful Predictions of Minimum Ice Path (MIP)

Winton et al. 2021, In Prep.

29

Figure 7.  Averages of Fig. 6 SPEAR MIP forecast root mean squared errors (RMSEs)

and ensemble spread compared to a heuristic forecast consisting of the anomaly

persistence forecast for the first month and the 5-year trailing climatology thereafter.

5-year climatology plus 
anomaly persistence
SPEAR w/ SIC DA
SPEAR w/ SIC DA + trend 
bias correction
SPEAR ensemble standard 
deviation (upper limit of 
predictability)

• MIP predictions are slightly 
more skillful than persistence 
forecast.

• There is substantial room for 
improvement via bias 
correction (red vs magenta) 
and model/initialization 
improvement (red vs green)



Conclusions
• SPEAR and FLOR prediction systems skillfully predict Pan-Arctic and regional sea 

ice extent (SIE)

• SPEAR skill generally higher than FLOR due to improved SIE and sea ice volume 
(SIV) initial conditions

• A combination of regional predictors (SIE, SIV, and upper ocean heat content) can 
match, or in some cases exceed, the skill of the dynamical models. We advocate 
using these three simple predictors as benchmark tests of Arctic seasonal 
prediction systems.

• Chukchi Sea exhibits a combined predictability regime, associated with interactions 
between the ice edge and inflowing ocean waters through Bering Strait.

• Sea ice concentration (SIC) data assimilation improves subseasonal predictions of 
SIE, SIC, ice free probability, and ice retreat date.

• SPEAR can skillfully predict “minimum ice path” through the Northeast and 
Northwest passages, and shows “room for improvement.”
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Fig. 2.  July-October average Northwest (top) and Northeast (bottom) MIPs and

comparable total regional ice extents.

F��. 8. 45 forecasting-day mean RMSE di�erences of sea ice concentration (SIC) between the experiments

IceDA and nIceDA (IceDA-nIceDA) for each initialization month.
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Sea Ice Thickness and Drift Climatology



Sea Ice Volume (SIV) Initial Conditions Interannual Variability

• Detrended regional SIV 
correlations with PIOMAS

S1 Regional SIV IC Correlations with PIOMAS
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Figure S1: Regional SIV detrended correlations between FLOR (blue) and SPEAR MED (red)

ICs and PIOMAS reanalysis observations. For region definitions see Figs. 6, 7.
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