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The Arctic Ocean — Top of the world
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Climate change is amplified in the Arctic

Temperature anomaly [K]
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Rapid ongoing decline in Arctic Sea Ice ;
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Changes in sea ice cover and temperature may well u
affect the Arctic ecosystem, e.g. by increasing net
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Arctic Ocean is particularly vulnerable to ocean
acidification
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Observations in the Laptev Sea
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Climate models prone to large uncertainties in the
Arctic Ocean R

Net Primary Production
[9C mZyr1]

No summer sea ice NPP change during Surface Q, in 2075:
left by 2021-2043 218t century: -25% to +60% 0.5-0.8

(Wang et al., 2012) (Vancoppenolle et al., 2013) (Steiner et al., 2014)



Research questions

IIIIIIIIIII

1) Can we improve/constrain ocean acidification projections
in the Arctic Ocean?

2) How important is riverine nutrient delivery for the Arctic
Ocean net primary production?



Global climate models have difficulties to resolve the
Arctic bathymetry and thus to well simulate the Arctic

Ocean circulation
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b
Global climate models have difficulties to resolve the u

Arctic bathymetry and thus to well simulate the Arctic
Ocean circulation .
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Earth-System Model ensembles exhibit a large range of ub

projected C_,; inventories and associated saturation ,,
states in the Arctic Ocean

OESCHGER CENTRE

CLIMATE CHANGE RESEARCE

-
=N

— IPSL-CM5A-LR HadGEM2-ES

124 - IPSL-CM5A-MR -~ MIROC-ESM
— GFDL-ESM2G ~ — NorESM1-ME
10 —— GFDL-ESM2M -~ CMCC-CESM

— MPI-ESM-MR CESM1-BGC
e MPI-ESM-LR

Arctic Ocean C_,
inventory (Pg C)
Depth (m)

0 I I 1 I 1 I I 1
2000 2020 2040 2060 2080 2100 60 80 100 120
Year Arctic Ocean C_, in 2100 (mol kg™')
c d
1.2 0
D
o 1.1 500 qpo‘b
g
S 1.04 ]
g £ 1,500-
8 0.9+ £
8 8 2,000
2 0.8 3
g N 2,500 -
0.7+ 3,000 _
0.6 T T T T 3,500 I T 1 T T
2000 2020 2040 2060 2080 2100 0.6 0.8 1.0 1.2 1.4
Year Arctic Ocean Q. in 2100

Terhaar et al., 2020



b

The maximum sea surface density determines the deep- U

water formation in the Arctic Ocean and hence the C_; ,,

accumulation over the 21st century
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Across the CMIP5 ensembles a strong relationship
exists between sea surface densities in the Barents Sea
and C_,; accumulation
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The C,,; inventory in 2100 is strongly anti-correlated to ub

the basin-wide CaCO, saturation states in 2100, |
allowing to constrain these as well
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The reduction in uncertainties of the projected
saturation states is largest in mesopelagic waters
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CMIP6 results show that the emergent relationship u

between C_ and sea surface density is non-linear
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The relationship allows to reduce the projected C_ u

BERN

inventory also across the CMIP6 model ensemble
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However, in CMIP6 no relationship exists between C_;
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Models with more freshening take up less anthropogenic u
carbon but simulate a stronger reduction in alkalinity

Terhaar et al., 2021
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The compensation (low C_,; inventory, large decreases

in Arand vice versa) reduces uncertainties in the
projections of CaCO; saturation states in CMIP6 models
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Take home messages —

1) Projections of carbon uptake and ocean acidification by Climate Models
can be better constrained by the maximum sea surface density

2) The range of projections of Arctic Ocean acidification is reduced in
CMIP6 due to more realistic surface ocean conditions and enhanced
freshening

3) The Arctic Ocean will on average become undersaturated towards
aragonite independend of the scenario



Research questions

IIIIIIIIIII

1) Can we improve/constrain ocean acidification projections
in the Arctic Ocean?

2) How important is riverine nutrient delivery for the
Arctic Ocean net primary production?
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This Arctic Ocean NPP evolves rapidly with a changing u
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Projections of Arctic Ocean NPP diverge strongly across u
climate models
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Projections of Arctic Ocean NPP diverge strongly across ub

climate models, but most of them do not account for :
terrigenous nutrients from rivers and coastal erosion
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1) Arctic coastal erosion rates as high as 25 m yr-
(Fritz et al., 2017)

2) Rivers sustain 10% of Arctic Ocean NPP (Le
Fouest et al., 2015)

‘ Offshore
Primary transport
productiol&. e

e 0 Ao 2
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=" 0) l 3) Nutrients fluxes from rivers are projected to
TN, T——— \ increase over the 21st century (Frey et al., 2007) and
¥ ™ duetoclimate 2 . . .

2 ®omve 4 2ot hence increase basin-wide NPP by ~11% (Terhaar
§ Therm_ale‘rosion and » \ Sediment, carbon and et al, 2019)

> undercutting by waves nutrient transport
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Projections of Arctic Ocean NPP diverge strongly across u
climate models, but most of them do not account for

b

terrigenous nutrients from rivers and coastal erosion

Arctic Ocean Primary Production

AlPP
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1) Arctic coastal erosion rates as high as 25 m yr'

(Fritz et al., 2017)

Rivers sustain 10% of Arctic Ocean NPP (Le
Fouest et al., 2015)

Nutrients fluxes from rivers are projected to
increase over the 21st century (Frey et al., 2007) and

hence increase basin-wide NPP by ~11% (Terhaar
et al., 2019)

Could terrigenous nutrients explain the divergence of Arctic NPP projections?
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The Arctic Ocean is strongly exposed to terrigenous
nutrients due its geographical situation
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> Arctic Ocean watershed area that is larger than its own area.

> 11% of global river discharge into the Arctic Ocean
although it holds only 1% of the global ocean volume

5,000

> |In addition, the Arctic coastline is eroding fast due to 1,000

thawing permafrost, providing another important source
of terrigenous nutrients
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100

> Arctic shelves represent 18% of global shelf sea ”
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We derived spatially and temporally resolved carbon
and nutrient fluxes from rivers and coastal erosion
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We derived spatially and temporally resolved carbon

and nutrient fluxes from rivers and coastal erosion imrensiar

Riverine C, N, P, Si inputs Coastal Erosion of C, N, P

The full dataset is freely available on SEANOE:

Gridded carbon and nitrogen land-ocean fluxes
north of 60° N from rivers and coastal erosion

https://doi.org/10.17882/76983.

- 0 s o - 0 2]
'Arctic Great Rivers Observatory e T pos 2Arctic Coastal Dynamics
(Holmes et al., 2018) Database (Lantuit et al., 2012)

Terhaar et al. (2021)



https://doi.org/10.17882/76983

We derived spatially and temporally resolved carbon
and nutrient fluxes from rivers and coastal erosion
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The impact of terrigenous nutrients on Arctic Ocean u
NPP is quantified using a high-resolution ocean-
biogeochemical model (NEMO-PISCES)
« Discretization of Navier-Stokes equations e
- Sea Ice model LIM /// ‘
« Atmospheric forcing: [
— Historical reanalysis (DFS 4.2/ DFS 4.4) 1/
\

« Nominal horizontal resolution 0.25° Y
. . 7 Typical ORCA grid
(ca. 14 km in the Arctic Ocean) “ (Figure from

www.geomar.de)

Simulated surface
velocity
www.nemo-ocean.eu




The impact of terrigenous nutrients on Arctic Ocean

NPP is quantified using a high-resolution ocean- —
biogeochemical model (NEMO-PISCES) cscnaen

» Discretization of Navier-Stokes equations

:'NPP sustained by terrigenous nutrients is calcul‘ated as
the difference between the simulation with terrigenous
nutrient input and the one without.

Hence, nutrients that come from rivers and are many
times recycled and after 2 or 3 years still in the Arctic

Ocean are still counted as terrlgenous nutrients

Simulated surface
velocity
www.nemo-ocean.eu




Around one third of Arctic Ocean NPP is found to be

a

sustained by terrigenous nutrients

b

Including rivers and coastal erosion Without rivers and coastal erosion

Data—based product
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Around one third of Arctic Ocean NPP is found to be

a

sustained by terrigenous nutrients

b

Including rivers and coastal erosion Without rivers and coastal erosion

Data—based product
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Simulated NPP is far too low without terrigenous N inputs
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NPP driven by terrigenous nitrogen is 8 times larger ;
than the terrigenous nitrogen delivery

Terrigenous supply of

_ NPP in the Arctic Ocean driven by
nitrogen

terrigenous nitrogen

| S~ 2.6 Tg N yr-1

S

138 TgCyr'-> 21.1 Tg N yr-
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Terrigenous nutrients are recycled on average about 8
times in the Arctic Ocean before being exported -
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Terrlgen_ous supply of NPP in the Arctic Ocean driven by
nitrogen terrigenous nitrogen

~ 26TgNyr! §

the surface ocean

= | prosion

/\ /
Canadian Arctic Archipelago

Export / burial show recycling rates of 0.5-3.2

(Smith et al.1997; Tremblay et al. 2006; Garneau et al.2007)

Previous estimates in the




The remineralization is largely occurring within the

sediments
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Remineralization is mainly occurring on shallow Arctic
shelf seas R
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Bathymetry Only rivers and coastal erosion
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The results are robust when considering a wide range u
of remineralization rates and uncertainties in
terrigenous nitrogen quantities ——
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Take home messages

1) Terrigenous nutrients are one of the main drivers of Arctic Ocean
primary production

2) Terrigenous nutrients are recycled on average 7 times before leaving the
upper Arctic Ocean

3) Most of the remineralization of organic matter occurs in the shallow
Arctic Ocean sediments
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1) Ocean acidification is extremer than
previously expected and thus endangers
the Arctic Ocean ecosystem even more




Summary

' ARCTIC MARINE MAMMALS SIMPLIFIED FOOD WEB

L

——

RINGED SEAL

b

u

b
UNIVERSITAT
BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCE

1) Ocean acidification is extremer than
previously expected and thus endangers
the Arctic Ocean ecosystem even more

2) Increasing terrigenous nutrients may lead
to a future increase in Arctic Ocean NPP
and thus increasing the food availability in
the Arctic Ocean @




