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“Ice in Motion” by Kȧre Holter Solhjell, near Svalbard



Sea Ice
Modeling:

Characteristics
and

Processes
Critical for

the Radiation
Budget

Elizabeth
Hunke

Overview

Factors in
the Radiation
Budget
Surface
characteristics

Ice thickness

Optics

Ecosystem

Clouds

Summary

Sea ice has. . .

extent
thickness
velocity
stuff on it

stuff in it

Aerosol cycling implementation

Ice Interior

Ice SSL (5cm)

Snow SSL (4cm)
Snow Interior

• Four aerosol reservoirs in the vertical
• Aerosol cycling due to ice transport, vertical melt/growth 
•Melt water scavenging 
• Six aerosols – 2 black carbon (hydrophilic/phobic), 4 dust
• Currently affects radiative transfer
• Receiving aerosol deposition from CAM
• Near‐term (months) work will link to ocean iron deposition
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Monthly Sea Ice Thickness

Interannual
variability:

wind
air temperature
humidity

Calculated/
Feedbacks:

turbulent fluxes
radiation
SST
air temperature

m

SSM/I 15% ice concentration

1958–2007 CICE simulation
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Ice Thickness Distribution g

Schematic of model representation of g(H) in 
five ice “categories” 
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Slide courtesy Dave Bailey, NCAR
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Ice Thickness Distribution g

g(x,h, t)dh = the fractional area covered by ice in the
thickness range (h,h + dh) at a given time t and location x

∂g
∂t

= −∇ · (gu) + ψ − ∂

∂h
(f g) + L,

Ice Thickness Distribution 
Ice thickness distribution g(x,y,h,t) evolution equation 

from Thorndike et al. (1975) 

A PDF of ice thickness h 
in a region, such as a 
grid cell. 0 ! "g ! 1 

h 

g(h)dh 
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Ice Thickness Distribution g

g(x,h, t)dh = the fractional area covered by ice in the
thickness range (h,h + dh) at a given time t and location x

∂g
∂t

= −∇ · (gu) + ψ − ∂

∂h
(f g) + L,

∇ = ( ∂
∂x ,

∂
∂y )

u = horizontal ice velocity
ψ = mechanical redistribution function
f = rate of thermodynamic ice growth
L = lateral melting
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The Radiation Budget

J. Geophys. Res. 1971
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net shortwave = 310 - 239 = 71 W/m2
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(June) net longwave = 291 - 321 = -30 W/m2

transmitted shortwave = 1.6 W/m2
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lateral growth and melt
ice motion

rheology
elastic-viscous-plastic
elastic-anisotropic-plastic

momentum
wind, currents, Coriolis, tilt, internal stress
Monin-Obukhov similarity for turbulent fluxes
form drag (ridges, keels, floe and pond edges)

transport equations
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Surface characteristics Snow

E. Hunke

vertical conductive, radiative, turbulent fluxes
assumed density profile (constant!)
effective thermal conductivity
salinity = 0
mass changes due to

snow-ice formation
snowfall
sublimation/deposition
melt
loss during ridging

transported on top of sea ice
interacts with melt ponds
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Surface characteristics Snow

E. Hunke

vertical conductive, radiative, turbulent fluxes
assumed density profile (constant!)
effective thermal conductivity
salinity = 0
mass changes due to

snow-ice formation
snowfall
sublimation/deposition
melt
loss during ridging

transported on top of sea ice
interacts with melt ponds

Coming Soon:
snow redistribution by wind
depth hoar (variable crystal size)
variable density
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Surface characteristics Melt ponds
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pool on thinner ice or level ice
hidden in snow until saturation
drain through permeable ice
refreeze at the top
snow collects on refrozen ponds
transported on sea ice
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hidden in snow until saturation
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Ice thickness
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mechanical redistribution (ridging)
thermodynamic growth/melt

top and bottom ablation
bottom accretion (congelation)
frazil growth
snow-ice formation
“mushy layer” with prognostic salinity
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“Mushy Layer” Thermodynamics

growth

below upward into the channel. Such flow has been ob-
served in the laboratory [Eide and Martin, 1975; Niedrauer
and Martin, 1979] and has been recorded on videotape by
K. Medjani (unpublished videotape, 1992).
[39] Figures 9c and 9d suggest that as the mushy zone

grows, there is a reduction in the number of prominent brine
channels, indicating a relationship between the spacing of
channels and the depth of the mushy zone in young sea ice.
Wakatsuchi and Saito [1985] find that ‘‘the spatial density
of the brine channels is approximately determined by the ice
growth rate at the initial stage of ice growth, and is
maintained during the subsequent ice growth.’’ This ques-
tion needs to be further explored. At 945 min the mushy
zone is 6.7 cm thick (Figure 9e) and shows only one
prominent channel. The brine drainage has decreased be-
cause of slower growth rate, also observed in the experi-
mental work of Gow et al. [1990].
[40] The dynamic characteristics of the brine streams are

illustrated by viewing the data at 5.4 second intervals,
equivalent to 10 time steps. Beginning with streamlines and
bulk salinity contours at 10,000 time steps (Figure 10a), data
are shown for three additional instances, each 5.4 seconds s
apart (Figures 10b, 10c, and 10d). Numbers are used to
identify seven brine streams which appear in the mushy zone
between 90 min and 90 min, 16.2 seconds s of ice growth.
Following stream number 1, for example, it progresses from a
distinctive output in Figures 10a and 10b to an apparent
merging with stream number 2 in Figure 10c to a complete
disappearance in Figure 10d. Stream 2 begins with very little
output in the first image to a point where a mass of heavy
brine has ‘‘broken off.’’ Streams 3 and 4 grow and diminish
during the displayed 16.2 seconds s of ice growth. Stream 5
shows a clear concentration of streamlines, but very little
increase in drainage during that time. Note, however, that the
streamlines indicate only the path of the flow, not the
magnitude. A correlation cannot be made therefore between
the magnitude of flow emanating from the channels and the
size of the structure above. Streams 6 and 7 begin at distinct
drainage points, but then merge into one stream. These
images clearly show the dynamic nature of brine drainage
during the formation of young NaCl-H20 ice.
[41] A scaling analysis of the energy equation by Krane

and Incropera [1996] provides a simplified relationship
between the mushy layer depth and the duration of growth.
In their analysis of the macroscopic development of the ice
layer, Krane and Incropera show that the convective terms
are significantly smaller than diffusion and latent heat terms

Figure 9. Sea ice growth in a two-dimensional rectangular
enclosure with a surface temperature of !10!C. Shows
black streamlines and shaded bulk salinity contours
indicating brine drainage into the underlying reservoir. Data
are reported from various consecutive times in a numerical
experiment of 110,000 time steps, (a) 2.46 cm of mushy
zone depth in 90 min of ice growth (10,000 time steps),
(b) 3.36 cm of mushy zone depth in 180 min of ice growth
(20,000 time steps), (c) 3.96 cm of mushy zone depth in
270 min of ice growth (30,000 time steps), (d) 4.46 cm of
mushy zone depth in 360 min of ice growth (40,000 time
steps), and (e) 6.7 cm of mushy zone depth in 945 min of
ice growth (105,000 time steps).
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brine channels

Equations Variables
Conservation of energy Enthalpy
Conservation of salt Bulk salinity
Ice-brine liquidus relation Liquid fraction
Darcy flow through Vertical velocity

a porous medium
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Delta Eddington
Multiple Scattering Parameterization for Solar Radiation

Aerosol cycling implementation

Ice Interior

Ice SSL (5cm)

Snow SSL (4cm)
Snow Interior

• Four aerosol reservoirs in the vertical
• Aerosol cycling due to ice transport, vertical melt/growth 
•Melt water scavenging 
• Six aerosols – 2 black carbon (hydrophilic/phobic), 4 dust
• Currently affects radiative transfer
• Receiving aerosol deposition from CAM
• Near‐term (months) work will link to ocean iron deposition
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Delta Eddington
Multiple Scattering Parameterization for Solar Radiation

Aerosol cycling implementation

Ice Interior

Ice SSL (5cm)

Snow SSL (4cm)
Snow Interior

• Four aerosol reservoirs in the vertical
• Aerosol cycling due to ice transport, vertical melt/growth 
•Melt water scavenging 
• Six aerosols – 2 black carbon (hydrophilic/phobic), 4 dust
• Currently affects radiative transfer
• Receiving aerosol deposition from CAM
• Near‐term (months) work will link to ocean iron deposition

Aerosol cycling implementation

Ice Interior

Ice SSL (5cm)

Snow SSL (4cm)
Snow Interior

• Four aerosol reservoirs in the vertical
• Aerosol cycling due to ice transport, vertical melt/growth 
•Melt water scavenging 
• Six aerosols – 2 black carbon (hydrophilic/phobic), 4 dust
• Currently affects radiative transfer
• Receiving aerosol deposition from CAM
• Near‐term (months) work will link to ocean iron deposition

Aerosol cycling implementation

Ice Interior

Ice SSL (5cm)

Snow SSL (4cm)
Snow Interior

• Four aerosol reservoirs in the vertical
• Aerosol cycling due to ice transport, vertical melt/growth 
•Melt water scavenging 
• Six aerosols – 2 black carbon (hydrophilic/phobic), 4 dust
• Currently affects radiative transfer
• Receiving aerosol deposition from CAM
• Near‐term (months) work will link to ocean iron deposition

air@
@R���

snow scattering layerA
AU�
��

snow interior
B
B
BN�
��

ice scattering layer
C
CCW

ice interior

?

pond Thin snow is patchy

Inherent optical properties:
extinction coefficient
single scattering albedo
scattering asymmetry

Apparent optical properties:
albedo
internal absorption
transmission to ocean

Tuning parameters:
snow grain radii
fresh, melting, nonmelting
standard deviation
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Sea Ice Ecosystem

• physical, hydrological system
• chemistry and biology

– in the ice column
– at the bottom
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Algae in the Bottom Ice, 1992 IARC/UAF

Figure 8. 

Figure courtesy Clara Deal, IARC
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Aerosol Enhanced Ice Shortwave
Absorption CESM

CICE4

RSW Aerosols
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Vertically Resolved Sea Ice
Biogeochemistry

algal types: diatoms, flagellates, Phaeocystis
DON/DOC: proteins, polysaccharides, lipids
nutrients: nitrate/nitrite, silicate, ammonium, DMS(P)(d)
aerosols & chlorophyll absorption alter ice growth,
under-ice PAR via Delta-Eddington

Figure courtesy Nicole Jeffery, LANL
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Clouds ... in the atmosphere (model)

E. Hunke

reflect sunlight
emit longwave radiation
trap warmth
provide precipitation
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Summary

E. Hunke

Sea ice models have advanced remarkably since the 1970s

Basic processes (dynamics, thermo) are represented

Modelers are busy refining the details
to be able to answer new research questions

How does the sea ice ecosystem interact with
and alter the ocean system?
How does it contribute to the aerosols that
become cloud condensation nuclei?
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