Sea Ice Outlook

2021 August Report Individual Outlook

N	Name	of	contributor	or	name	of	contributing	organiza	tion:
_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~-		~-		~-		0 - 5 00	

UTokyo (Kimura et al.)

Is this contribution from a person or group not affiliated with a research organization?

Name and organization for all contributors. Indicate primary contact and total number of people who may have contributed to your Outlook, even if not included on the author list.

UTokyo (Kimura et al.)

Do you want your June contribution to automatically be included in subsequent reports? (If yes, you may still update your contribution via the submission form.)

Repeat this submission in all future monthly reports

What is the type of your Outlook projection?

Statistical

Starting in 2017 we are accepting both pan-Arctic and pan-Antarctic sea ice extent (either one or both) of the September monthly mean. As in 2016, we are also collecting Alaskan regional sea ice extent. To be consistent with the validating sea ice extent index from NSIDC, if possible, please first compute the average sea ice concentration for the month and then compute the extent as the sum of cell areas > 15%.

a) Pan-Arctic September extent prediction in million square kilometers.

4.66

b) same as in (a) but for pan-Antarctic. If your method differs substantially from that for the Arctic, please enter it as a separate submission.

c) same as in (b) but for the Alaskan region. Please also tell us maximum possible extent if every ocean cell in your region were ice covered.

"Executive summary" of your Outlook contribution (using 300 words or less) describe how and why your contribution was formulated. To the extent possible, use non-technical language.

Monthly mean ice extent in September will be about 4.66 million square kilometers. Our estimate is based on a statistical way using data from satellite microwave sensor. We used the accumulated sea ice convergence based on the 212 days backward tracking of the ice from June 30 to December 1.

Brief explanation of Outlook method (using 300 words or less).

We predicted the Arctic sea-ice cover from coming July 1 to November 1, using the data from satellite microwave sensors, AMSR-E (2002/03-2010/11) and AMSR2 (2012/13-2020/21). First, we estimate the accumulated sea ice convergence from June 30 to December 1 of the preceding year based on the backward tracking of sea ice. Then, we predict the summer ice area depending on the relationship between the ice convergence and summer ice concentration. The analysis method is based on our research (Kimura et al., 2013) showing the possible relation between the ice convergence and ice thickness.

Tell us the dataset used for your initial Sea Ice Concentration (SIC).

10km grid data by Arctic Data Archive System (https://ads.nipr.ac.jp)

Tell us the dataset used for your initial Sea Ice Thickness (SIT) used. Include name and date.

NA

If you use a dynamic model, please specify the name of the model as a whole and each component including version numbers and how the component is initialized:

If available from your method. a) Uncertainty/probability estimates:
a) Uncertainty/probability estimates.
Median
Lower error bound
Lower error bound
Standard Deviation
Standard Deviation
b) Brief explanation/assessment of basis for the uncertainty estimate (1-2 sentences).
c) Brief description of any post-processing you have done (1-2 sentences).